KeraVision®

- EuroKera KeraVision[®] has been engineered to comply with the requirements of the market for cooktops.
- All current heating methods (radiant, halogen, gas burners, induction...) can be used with KeraVision[®].
- The unique optical properties of KeraVision[®] black glass ceramic allow bright and luminous displays in new colors (blue, green, yellow...).
- > The environmentally friendly manufacturing process of KeraVision[®] eliminates the use of heavy metals such as arsenic or antimony.

Density

Specifications

The physical and chemical characteristics of KeraVision[®] are in accordance to relevant EN, ISO, NF or DIN standards, when available, and otherwise according to our company specifications (SPC-EU/ST14). In particular, KeraVision[®] meets the mechanical specifications defined in European standards EN 60335-1 and EN 60335-2-6.

The bottom surface of KeraVision[®] panels is covered with a black opacifying layer, outside of the display areas for all applications and outside of the heating zones (for radiant application only).

This product is available with or without bottom surface texture (pebbles).

NOTE: Information in this document reflect standard specification. Do not hesitate to consult us for any special request.

	Mechanical		3,	
		Young's Modulus E	GPa	92
		Torsion Modulus G	GPa	36
		Poisson's Ratio		0.26
		Minimum mechanical bending strength	MPa	150
		Knoop Hardness		600
	Thermal	CTE (20-700°C)	10 ⁻⁷ .K ⁻¹	0 ± 1
		Specific Heat (20-100°C)	J/g.K	0.9
		Resistance to Thermal gradients	°C	∆Tmax = 700
		Resistance to Thermal shock	°C	∆Tmax = 700
	Optical	IR Transmission at 1100 nm		69%
		IR Transmission at 2400 nm		80%
		Visible Transmission at 465 nm		≥ 1.9%
	Electrical	Electrical resistivity log n at 250°C	Ω.cm	6.8
		Electrical resistivity log n at 350°C	Ω.cm	5.4
		Dielectric constant (1MHz, 25°C)		7.9
		Loss factor tan (1MHz, 25°C)		0.02
	Chemical	Hydrolitic resistance DIN12111		HGB1
		Acid resistance DIN12116 class		Class 3
		Alkali resistance DIN52322		A1

a/cm³

2.54